Minimizing Risks from Fluoroscopic X Rays®

A Continuing Education and Credentialing Program for Safe Practice

Fifth Edition

by

Louis K. Wagner, Ph.D., DABR, FACR, FAAPM
Keith J. Strauss, M.S., DABR, FACR, FAAPM
Benjamin R. Archer, Ph.D., DABR, FACMP, FAAPM

www.rmpartnership.com

Table of Contents

ABOUT THIS MONOGRAPH

GETTING STARTED
 A SHORT HISTORY LESSON
 THE RECENT PAST
 EDUCATION
 RESPONSIBILITIES

QUALIFIED USERS
 COMPONENTS OF TRAINING
 TRAINING ON SPECIFIC EQUIPMENT

PROPERTIES OF X RAYS
 X RAY VERSUS X-RAY
 X RAYS AND LIGHT
 X-RAY IMAGING ALWAYS CAUSES BIOLOGICAL CHANGES

RADIATION QUANTITIES AND UNITS
 RADIATION EFFECTS VERSUS RADIATION RISK
 ABSORBED DOSE
 AIR KERMA AND EXPOSURE
 Free-in-air air kerma
 Surface air kerma
 Exposure as a quantity
 ABSORBED DOSE AT ENTRANCE SKIN SURFACE
 EQUIVALENT DOSE
 EFFECTIVE DOSE
 KERMA-AREA (DOSE-AREA) PRODUCT
 SUMMARY OF “DOSE”
BIOLOGICAL EFFECTS

CLASSIFICATIONS OF RADIATION EFFECTS

Stochastic effects
 Cancers in patients
 Cancers in medical workers
 Radiation-Induced heritable effects

Radiation-induced injuries

INJURIES TO PRACTITIONERS

INJURIES IN PATIENTS

RECOGNIZING FLUOROSCOPICALLY INDUCED RADIATION SKIN INJURY

RADIATION-INDUCED CATARACT

FLUOROSCOPY AND FLUOROGRAPHY

X-RAY TUBE KILOVOLTAGE

TUBE CURRENT

PULSED VERSUS CONTINUOUS FLUOROSCOPY
 Conventional fluoroscopy
 Pulsed fluoroscopy
 Variable pulsed fluoroscopy

FLUOROGRAPHY

FILTRATION

INTERNAL SHIELDING

GEOMETRIC COLLIMATION

GENRES OF FLUOROSCOPEs
 Mini-C-arms
 Standard mobile C-arms
 Table-tower fluoroscopes
 Fixed-in-room C-arms

OPERATOR CONTROL

RADIATION MANAGEMENT FOR FLUOROSCOPY

#1 ANATOMICAL SIZE OF THE PATIENT
 Factors affecting dose rate
 Patient size and dose rates to personnel

#2. DOSE-RATE SETTlNGS
 Operational software options
 Dose rate settings for fluoroscopy
 Fluoroscopic pulse rate
 Fluoroscopic dose rate

Recorded fluoroscopy

Fluorography or acquisition imaging
 Cineangiocardiology and the cine loop
 Digital fluorography

Special image-guiding techniques

Image display
#3. BEAM-ON TIME AND DWELL TIME
Beam-on time
Fluoroscopy timer
Beam dwell time
Fluorography on-time
 Digital fluorography
 Cine and the cine loop
Aids to reduce beam-on time
Beam-on time and doses to personnel

#4. PROXIMITY OF PATIENT TO X-RAY TUBE
Source-to-patient distance
A conundrum
The separator cone (or spacer device)
 SSD and dose to personnel
 SSD and image quality

#5. PROXIMITY OF IMAGE RECEPTOR TO PATIENT
Patient-to-image-receptor distance

#4 AND #5 TENETS COMBINED
Patient dose and physician height
Patient dose and invasive devices

#6 MAGNIFICATION
Field of view (FOV)
Image magnification
Electronic magnification
Geometric magnification

#7. THE GRID

#8 COLLIMATION
X-ray field collimation

#9. MONITORING AND MANAGING RADIATION USE
#9A. Monitoring radiation use
Fluoroscopy on-time
Cumulative air kerma at a reference point
Air kerma-area product
Skin-dose mapping
#9B. Managing radiation use

High-dose procedures

Before the procedure
- Demographic factors
- Medications
- Radiation history
- Diseases or conditions
- Counseling the patient
- The special condition of pregnancy

During the procedure

After the procedure

#10. MASTERY OF RADIATION SAFETY

Viewpoint

Protective aprons

Radiation monitoring for personnel

Using distance as a shield

Laded eyewear, thyroid shields, and upper body shields

Mobile and lower body barriers

Hand protection

Equipment design safety features
- Conventional table-tower fluoroscopy
- Remote control fluoroscopy
- C-arm fluoroscopy

Invasive devices & doses to patient and staff
- Fluoroscopy with x-ray tube above table
- Fluoroscopy with x-ray tube under table

Pregnant personnel

Regulations

CONCLUSION

REFERENCES

INDEX